91 research outputs found

    On and Off-diagonal Sturmian operator: dynamic and spectral dimension

    Full text link
    We study two versions of quasicrystal model, both subcases of Jacobi matrices. For Off-diagonal model, we show an upper bound of dynamical exponent and the norm of the transfer matrix. We apply this result to the Off-diagonal Fibonacci Hamiltonian and obtain a sub-ballistic bound for coupling large enough. In diagonal case, we improve previous lower bounds on the fractal box-counting dimension of the spectrum.Comment: arXiv admin note: text overlap with arXiv:math-ph/0502044 and arXiv:0807.3024 by other author

    Central limit behavior of deterministic dynamical systems

    Full text link
    We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a problem relevant for many complex physical systems consisting of dependent random variables. A Central Limit Theorem (CLT) is only valid if the dynamical system under consideration is sufficiently mixing. For the fully developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experiments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability density converges to a qq-Gaussian, thus leading to a power-law generalization of the CLT. The above behavior is universal and independent of the order of the maximum of the map considered, i.e. relevant for large classes of critical dynamical systems.Comment: 6 pages, 5 figure

    Prevalence of marginally unstable periodic orbits in chaotic billiards

    Full text link
    The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both {\it exist} and {\it strongly influence} the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.Comment: 6 pages, 5 figure

    Incommensurability of a confined system under shear

    Get PDF
    We study a chain of harmonically interacting atoms confined between two sinusoidal substrate potentials, when the top substrate is driven through an attached spring with a constant velocity. This system is characterized by three inherent length scales and closely related to physical situations with confined lubricant films. We show that, contrary to the standard Frenkel-Kontorova model, the most favorable sliding regime is achieved by choosing chain-substrate incommensurabilities belonging to the class of cubic irrational numbers (e.g., the spiral mean). At large chain stiffness, the well known golden mean incommensurability reveals a very regular time-periodic dynamics with always higher kinetic friction values with respect to the spiral mean cas

    Selfsimilarity and growth in Birkhoff sums for the golden rotation

    Full text link
    We study Birkhoff sums S(k,a) = g(a)+g(2a)+...+g(ka) at the golden mean rotation number a with periodic continued fraction approximations p(n)/q(n), where g(x) = log(2-2 cos(2 pi x). The summation of such quantities with logarithmic singularity is motivated by critical KAM phenomena. We relate the boundedness of log- averaged Birkhoff sums S(k,a)/log(k) and the convergence of S(q(n),a) with the existence of an experimentally established limit function f(x) = lim S([x q(n)])(p(n+1)/q(n+1))-S([x q(n)])(p(n)/q(n)) for n to infinity on the interval [0,1]. The function f satisfies a functional equation f(ax) + (1-a) f(x)= b(x) with a monotone function b. The limit lim S(q(n),a) for n going to infinity can be expressed in terms of the function f.Comment: 14 pages, 8 figure

    On Hausdorff dimension of the set of closed orbits for a cylindrical transformation

    Full text link
    We deal with Besicovitch's problem of existence of discrete orbits for transitive cylindrical transformations Tφ:(x,t)(x+α,t+φ(x))T_\varphi:(x,t)\mapsto(x+\alpha,t+\varphi(x)) where Tx=x+αTx=x+\alpha is an irrational rotation on the circle \T and \varphi:\T\to\R is continuous, i.e.\ we try to estimate how big can be the set D(\alpha,\varphi):=\{x\in\T:|\varphi^{(n)}(x)|\to+\infty\text{as}|n|\to+\infty\}. We show that for almost every α\alpha there exists φ\varphi such that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is at least 1/21/2. We also provide a Diophantine condition on α\alpha that guarantees the existence of φ\varphi such that the dimension of D(α,φ)D(\alpha,\varphi) is positive. Finally, for some multidimensional rotations TT on \T^d, d3d\geq3, we construct smooth φ\varphi so that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is positive.Comment: 32 pages, 1 figur

    Spectra of Discrete Schr\"odinger Operators with Primitive Invertible Substitution Potentials

    Full text link
    We study the spectral properties of discrete Schr\"odinger operators with potentials given by primitive invertible substitution sequences (or by Sturmian sequences whose rotation angle has an eventually periodic continued fraction expansion, a strictly larger class than primitive invertible substitution sequences). It is known that operators from this family have spectra which are Cantor sets of zero Lebesgue measure. We show that the Hausdorff dimension of this set tends to 11 as coupling constant λ\lambda tends to 00. Moreover, we also show that at small coupling constant, all gaps allowed by the gap labeling theorem are open and furthermore open linearly with respect to λ\lambda. Additionally, we show that, in the small coupling regime, the density of states measure for an operator in this family is exact dimensional. The dimension of the density of states measure is strictly smaller than the Hausdorff dimension of the spectrum and tends to 11 as λ\lambda tends to 00

    Restricted random walk model as a new testing ground for the applicability of q-statistics

    Full text link
    We present exact results obtained from Master Equations for the probability function P(y,T) of sums y=t=1Txty=\sum_{t=1}^T x_t of the positions x_t of a discrete random walker restricted to the set of integers between -L and L. We study the asymptotic properties for large values of L and T. For a set of position dependent transition probabilities the functional form of P(y,T) is with very high precision represented by q-Gaussians when T assumes a certain value TL2T^*\propto L^2. The domain of y values for which the q-Gaussian apply diverges with L. The fit to a q-Gaussian remains of very high quality even when the exponent aa of the transition probability g(x)=|x/L|^a+p with 0<p<<1 is different from 1, all though weak, but essential, deviation from the q-Gaussian does occur for a1a\neq1. To assess the role of correlations we compare the T dependence of P(y,T) for the restricted random walker case with the equivalent dependence for a sum y of uncorrelated variables x each distributed according to 1/g(x).Comment: 5 pages, 7 figs, EPL (2011), in pres

    Brownian motion and diffusion: from stochastic processes to chaos and beyond

    Full text link
    One century after Einstein's work, Brownian Motion still remains both a fundamental open issue and a continous source of inspiration for many areas of natural sciences. We first present a discussion about stochastic and deterministic approaches proposed in the literature to model the Brownian Motion and more general diffusive behaviours. Then, we focus on the problems concerning the determination of the microscopic nature of diffusion by means of data analysis. Finally, we discuss the general conditions required for the onset of large scale diffusive motion.Comment: RevTeX-4, 11 pages, 5 ps-figures. Chaos special issue "100 Years of Brownian Motion

    Ergodicity of certain cocycles over certain interval exchanges

    Full text link
    We show that for odd-valued piecewise-constant skew products over a certain two parameter family of interval exchanges, the skew product is ergodic for a full-measure choice of parameters
    corecore